
Annotation without lexicons:
an alternative to the standard bootstrapping approach

Mark Davies
Illinois State University

1. Introduction

A fundamental problem facing the creators of corpora for less-common languages – or the older stages
of an established language – is the lack of suitable lexicons to annotate the corpus. Typically, the
annotation of these languages involves “bootstrapping”, which refers to the process of starting with the
most frequent forms (or some of the morphologically most predictable forms, or both) and
progressively annotating the corpus as one also constructs the lexicon. As the annotation process
continues, one can deal with less common or less regular forms, because of the predictive capacity of
the increasingly robust lexicon and the increasingly rich, annotated context in the corpus itself . (For
papers dealing with recent approaches to bootstrapping for a wide range of languages, see Rocio et al
1999, van Eynde et al 2000, Simov et al 2002, Cucerzan et al 2002, Ghani et al 2002, Moreno et al
2003).
 A standard approach to corpus annotation is to recursively traverse the entire textual corpus
itself, searching for textual patterns, and then adding annotation to the corpus. This can be done either
by large-scale pattern matching and replacement (using regular expressions or a similar schema), or by
processing sequential chunks of text in a buffer (where only a small window of text is used to
disambiguate part of speech (POS) and lemma). The important point is that the annotation typically
takes place directly in the textual corpus itself.
 In this paper, we will outline an alternative schema that was used to annotate the Corpus del
Español (www.corpusdelespanol.org) – a 100 million word corpus of Spanish texts from the 1200s-
1900s. The annotation of this corpus was done without directly dealing with or seeing the actual
textual corpus itself. Rather, the annotation was done on tables containing all of the distinct 1, 2, 3, and
4-word sequences (n-grams) in the entire corpus, along with the frequency of each of these n-grams in
each historical period and modern register of Spanish. As we will see, this non-traditional approach
affords a number of important advantages, both in terms of the flexibility and speed of the search
engine for the corpus.
 For the purposes of this paper, we will focus primarily on the method of annotating the older
stages of the language – the texts from the 1200s through the 1500-1600s. The lexicon that we created
for Modern Spanish was able to annotate the texts from the 1800s-1900s quite well, but was
progressively less useful for older stages of the language. For example, only 40% of the types from the
1700s appear in the Modern Spanish lexicon, and this decreases to 33% for the 1500s and 16% for the
1200s. In other words, most of the types from older historical periods were from a different
“language”, as far as the lexicon was concerned. We will see, however, that by using an approach
based on n-grams tables in relational databases, we were still able to annotate tens of thousands of
distinct word forms from the oldest stages of the language in a matter of just a few hours.

2. Corpus architecture and design

Before discussing in detail the way in which the annotation is carried out with the aid of large relational
databases of n-grams, let us briefly consider the overall organization of the Corpus del Español. The
actual textual corpus for the 100 million word corpus is stored as 1000-2000 word chunks of text in a
Microsoft SQL Server 7.0 database. This textual corpus itself is not annotated in any way, apart from a
code that indicates the source of each block of text. However, it is indexed with SQL Server “Full-Text
Indexing”, which is similar to the standard Microsoft Search engine. This indexing scheme allows
exact words and phrases to be found fairly quickly – usually less than one second to query the entire
corpus and return the relevant examples. The important limitation, however, is that the Full-Text
search engine for SQL Server only works well with exact words and phrases. Even wildcard searches
are problematic, and certainly there is no capability for customized annotation of any sort.
 The annotation for the Corpus del Español resides in relational databases, which are
completely separate from the textual corpus itself. These databases are composed of different tables for
all of the 1, 2, 3, and 4-grams in the corpus. These tables also include the frequency for each of these
n-grams in each of the centuries from the 1200s-1900s, as well as the different registers of Modern
Spanish. The data for these tables was generated from the textual corpus itself using the WordList
function of WordSmith. This program was run separately for several three to four million word blocks
of text, and then merged together in the SQL Server tables.

 174

 As might be imagined, the tables are rather large, since they include all of the distinct 1, 2, 3,
and 4-grams in the entire corpus. There are nearly one million distinct 1-grams (i.e types), eleven
million distinct 2-grams, forty million distinct 3-grams, and 65 million distinct 4-grams. An example
of one of the forty million 3-grams from the corpus is the following:

Table 1. N-grams/frequency table
w1 w2 w3 x12 x13 x14 x15 x16 x17 x18 x19 19-Lit 19-Oral 19-Misc
son las cosas 38 16 77 67 16 19 33 68 24 40 14

The columns w1, w2, w3 refer to each of the “slots” in the 3-gram; the columns x12-x19 refer to the
frequency of this 3-gram in the 1200s-1900s; and 19-Lit, 19-Oral, and 19-Misc refer to the frequency in
these three registers from the 1900s. Each of these relational database tables is indexed, including
some clustered indices (to be discussed in more detail later on), all of which leads to very fast retrieval.

3. Queries without annotation

As this level, however, there is still no annotation per se – only the textual corpus and the n-grams
tables. Even at this level, however, there are some useful queries that can be run against the database.
For example, a user can input any of the following queries into the web-based form:

Table 2. Queries without annotation
QUERY SORT BY LIMITS
tan * como 1900s
*ización 1900s 1900s>5 –1800s
quer* lo/la/los/las *r 1200s +1200s -1500s

The first query will search the 3-grams table for all cases where the [w1] column is tan “as/so”
and the [w3] column is como “as”, and order the results by the frequency in the [x19] column. This
will return strings like tan bueno como “as good as”, tan rápido como “as fast as”, etc. The second
query will search the 1-grams table for all of the records where the word in the [w1] column ends in [-
ización], the value in the [x19] column is more than 5, and the value in the [x18] column is 0 (meaning
that the word appears for the first time in the 1900s). This will return strings like privatización,
globalización, and urbanización. The final example will return strings like queriendo lo fazer
“wanting to do it” and queremos las dezir “we want to say them”, which represent cases of a form of
querer “to want” followed by a direct object pronoun, followed by an infinitive. This query will search
the 3-grams table for all records where the [w1] column is has the pattern [quer-], the w2 column is one
of the following (lo, la, los, las), the word in the [w3] column ends in [-r], the [x12] column is greater
than 0, and the x15 column is 0 (meaning that the phrase is found primarily in Old Spanish).

The simple search syntax of the third query in the table above is transformed via web-based
scripting into the following SQL statement, which is then run against the database, and which returns
the results in less than one half of a second.

select top 300 * from x3 where
w1 like (‘quer%') and
w2 in ('lo', 'la', 'los', 'las') and
w3 like ('%r') and
x12>0 and x15= 0

Because Spanish has morphology that is both strong and fairly regular, users can employ simple lists of
words and word patterns to search for even relatively complex syntactic constructions, as in Table 2
above. However, at some point it will obviously be necessary to have more complete annotation,
including annotation for those lemma that are not morphologically regular (e.g. quis* for preterite
forms of querer), as well as parts of speech that are not predictable in terms of forms (such as nouns
and adjectives in Spanish). The major focus of this paper, then, is the way in which this can be done
using collocational and frequency information from the n-grams tables themselves, and the challenge
that this presents for languages (or stages of a language) for which we do not have a lexicon.

4. Annotating the corpus: inheriting information from related lexicons
Before turning to the basic question of how to enable “bootstrapping” via n-grams tables in relational
databases, however, let us first consider a related and somewhat less difficult scenario. Imagine that
there is a lexicon for the modern stage of a particular language, but that the need exists to annotate an
older stage of the same language. Obviously, some of the forms from the modern language will be
applicable to older stages, but this lexicon will become progressively less useful the farther back one

 175

goes. For example, as we have previously mentioned, 40% of the types from the 1700s in the Corpus
del Español appear in the Modern Spanish lexicon, and this decreases to 33% for the 1500s and 16%
for the 1200s. To the degree that there is similarity in types between the older and newer stages,
however, perhaps the best strategy for annotating the corpus is simply to use the database to “inherit”
features from related forms in the modern language.

Let us briefly consider how this “inheritance” of annotation features has been carried out with
the Corpus del Español. First, we used the frequency information in the n-grams tables to identify the
highest frequency forms from older stages of the language, for which lemma and/or POS has not been
applied from the Modern Spanish lexicon. For example, a simple SQL query like the following would
produce a rank-ordered list of the 300 most common words from the 1500s (x15 column) in the x1
table (single words), where the word (w1) is the same as a word in the lemma table (x_l), which does
not have a lemma assigned (column x1) (a similar query could be run for other centuries, as well as for
the POS table [x_c]):

select top 100 x1.x15,x1.w1
from x1,x_l
where x_l.x1 is null and x_l.w1 = x1.w1
order by x1.x15 desc

This list of the most common unannotated forms for a particular historical period can be
INSERTed into another table called “unannotated”. The corpus creator would then manually go
through this list and type into an adjacent column the modern forms that correspond to the older,
unannotated forms, in those cases where there is such a correspondence. For example, in this query
from the Corpus del Español, some of the unannotated forms that appear are començó, cavallos, and
hazían, which correspond to the modern forms comenzó, caballos, and hacían “3SG-started, horses,
3PL-made”. Once the modern forms are entered into the “unannotated” table along with the modern
form, we use a simple SQL UPDATE command to “copy” the POS and lemma values for the modern
forms and apply these to the older forms.

In addition to looking at the unannotated forms with the highest frequency, we can also search
for forms according to regularized phonetic or morphological changes between the modern language
and older stages of the language. For example, there was a regularized shift from [-zi-] to [-ci-] in
Spanish, and the following query will find the 1000 most common, unannotated forms from the 1500s
that have the pattern [-zi-], and which correspond to an annotated [-ci-] word in the modern lexicon,
such as the older forms haziendo, juizio, and vezinos.

select top 1000 x1.x15,x1.w1
from x1,x_l
where x_l.x1 is null and x_l.w1 = x1.w1
and x1.w1 like '%zi%' and patindex(x1.w1,'%zi%') in
(select patindex(w1,'%ci%') from x1
where w1 like '%ci%')
order by x1.x15 desc

Once these older forms are INSERTed into an “unannotated” table, a simple REPLACE command can
be used to place the modern form into another column, and a subsequent UPDATE query would copy
the modern Spanish POS and lemma values to the older forms. In this way, with a knowledge of some
of the basic phonetic, morphological, and orthographic changes in the language, it is possible to
annotate thousands of forms from older stages of the language in a matter of a few hours.

5. POS annotation with n-grams/frequency information and pattern matching

In the previous section we assumed a more optimistic scenario, in which there is some type of related
lexicon that can be applied to our corpus. Let us now turn to the more pessimistic scenario, in which
there is no lexicon at all and we are simply “working from scratch”. The only assumption here is that
we have the n-grams/frequency tables and the relational database structure that we have previously
discussed, but there are no other annotation tools available to us.

In order to assign POS, at the most basic level we will simply use SQL commands to select
the most common word forms that have a certain morphological pattern. For example, the following
SQL query selects those forms that end in [-ADO/-ADA/-ADOS/-ADAS], which is the typical marker
of the past participle:

 176

select top 100 x12, w1
from x1
where w1 like '%do' or w1 like '%da' or w1 like '%dos' or w1 like '%das'
order by x12 desc

The one problem with such queries, however, is that they also retrieve many items that are
morphologically similar, but which do not in fact belong to the desired grammatical category. For
example, the preceding query would retrieve (-DO) quando, grado, mando; (-DA) espada, nada, cada,
(-DOS) todos, dos; and (-DAS) espadas, todas – none of which are past participles.

Fortunately, we can use SQL sub-queries to limit forms that have overly-generalized patterns
(e.g. -DO, -DA, etc), by comparing them to other forms with which they share a predictable
morphological relationship. For example, the past participle of [-AR] verbs is (nearly always) formed
by removing the [-AR] of the infinitive, and replacing it with [-ADO]. We can therefore include in the
SQL query a sub-query that checks to see whether the “root” of an –ADO form (i.e. remove the –ADO)
can also be found as the root for an infinitive (i.e. remove the –AR):

select top 100 x12, w1
from x1
where w1 like '%ado' and len(w1) >=3 and
left(w1,len(w1)-3) in
(
select left(w1,len(w1)-2)
from x1 where
w1 like '%ar' and len(w1) >=2
and x12 > 10
)
order by x12 desc

Using this sub-query, we eliminate spurious [–ADO] forms like grado, obispado, and prelado, because
there are no corresponding infinitives with the (hypothetical) form *grar, *obispar, and *prelar.
 In addition, we can use sub-queries to find derived forms of grammatical categories. For
example, in searching for past participles ending in [–ADA] (fem sg), we can have the sub-query check
to see whether the corresponding [–ADO] (m sg) form also exists (and at a certain frequency, such as
10 occurrences in the 1200s):

select top 100 x12, w1
from x1
where w1 like '%ada' and
left(w1,len(w1)-1) in
(
select left(w1,len(w1)-1)
from x1 where
w1 like '%ado' and
x12 > 10
)
order by x12 desc

This would eliminate spurious “[-DA] past participles” like cada “each” and espada “sword” because
there are no corresponding [–DO] past participles like the hypothetical forms *cado and *espado.

6. POS annotation with n-grams and collocation information

In the preceding examples we have seen how POS annotation can be done by looking for
morphological patterns (prefixes, suffixes, etc), and how this can be enhanced through the use of sub-
queries, which test for the existence of related forms. In all of these cases, however, we have been
dealing with queries that look at individual word forms. The real strength of the n-grams approach
comes when we begin to limit queries based on the occurrence of given words within a certain n-gram
sequence.
 For example, suppose that we want to identify the 1000 most common infinitives in the
Spanish of the 1200s. We could do a simple search on the 1-gram table in which we search for words
(w1) ending in [-R] (the marker of the infinitive), and produce a rank-ordered list. The following query
would select these forms, but would also produce false entries like por, quier, mayor, muger, etc.

 177

select top 1000 x12, w1
from x1
where w1 like ‘%r’
order by x12 desc

An alternative strategy – and one that relies on the inherent strengths of an n-grams approach
– would be to search the 2-grams table for words that end in [-AR / ER / IR / YR], but which also occur
after some of the most common forms of one of the three auxiliary verbs poder, querer, and deber.

select top 1000 w2,sum(x12)
from x2 where
(w1 like 'quer%' or w1 like 'quis%' or w1 like 'quier%' or w1 like 'pod%' or w1 like
'pued%' or w1 like 'dev%' or w1 like 'deb%' or w1 like 'deu%') and
w2 like '%r'
group by w2
having sum(x12) > 2
order by sum(x12) desc

This query is much more accurate than the 1-gram query shown previously (producing only one false
hit in the top 200 word forms), and takes less than one second to run.
 The following are some additional searches that show how the n-grams tables can be used to
annotate parts of speech. In each case, we want to identify a two or three word syntactic environment
in which nearly all of the words in one of the “slots” belong to a particular syntactic category. For
example, suppose that we want to identify the 2000 most common nouns in the 1200s. A syntactic
environment in which these would occur is [indef art] + __ + [que] (un omne que “a man that”, vna
casa que “a house that”, etc). The following query – which takes less than one second to run – selects
the 2000 most frequent words in slot 2 (w2) in the 3-grams table (x3), which occur more than two
times in that slot and which are preceded by a word (w1) that is (una, una, vn, vna) and which are are
followed by que “that” in the third (w3) slot:

select top 2000 w2,sum(x12)
from x3 where
w1 in ('un', 'una','vn', 'vna') and
w3 = 'que'
group by w2
having sum(x12) > 2
order by sum(x12) desc

Likewise, the following query – which can be run against the entire 100 million word corpus
in less than one second – is an attempt to define a syntactic environment for adjectives. It selects all
words in the third slot (w3) of the 3-grams table (x3), in which the first slot (w1) is one of several high-
frequency forms of ser “to be”, and the second slot (w2) is a form of muy “very” or tan “so”:

select w3,sum(x12)
from x3 where
w1 in ('es','era','será','sera','fue') and
w2 in ('muy','mui','muy'’,’tan’)
group by w3
having sum(x12) > 2
order by sum(x12) desc

Finally, let us return to the category of past participle, which we considered in the previous
section. Recall that in the case of pattern matching with individual 1-grams, it was fairly difficult to
morphologically define a past participle (words that typically end in –ADO /-ADOS / -ADA / –
ADAS), because of the number of false hits like cada, dos, and espada. By using the 2-grams or 3-
grams table, however, we can constrain the search much better, by selecting only those forms that
occur after one of the auxiliary verbs haber “to have”, or estar or ser “to be”, which is the real evidence
for a form being a past participle In the following query, we search the 2-grams table (x2) to select
those forms (w2) that end in [–ADO /-ADOS / -ADA / –ADAS], which are preceded (w1) by some of
the highest frequency patterns matching forms of haber, ser and estar.

 178

select top 1000 w2
from x2 where
(w1 in (‘ha’,’has’,’han’) or w1 like ‘ha__a%’ or like 'esta_a%' or w1 in
('fue','fueron','era',’eran’)) and
(w2 like '%ado' or w1 like '%ada' or w1 like '%ados' or w1 like '%adas')
group by w2
having sum(x12) >= 2
order by sum(x12) desc

 As a final note regarding POS annotation, we should mention the progressive nature of the
process. As with other methods of bootstrapping, our queries will become progressively more refined
and powerful. For example, once we have accurately defined the 500 or 1000 most frequent nouns, we
can then use the category [noun] to look for the members of other categories. In other words, it is not
necessary for us to continually be doing queries “from scratch”, as in the examples given here.

7. Lemmatization with n-grams, frequency, collocates, and pattern matching

In addition to POS tagging, the n-grams/frequency tables can also be used to help with lemmatization.
Probably the most obvious application is to search for word forms that have a certain morphological
pattern. For example, the following query will list the sixty most frequent words (w1) in the 1200s,
where the word pattern is ‘quer*’ (querya, querremos), ‘qu_er*’ (quiere, qujeren) or ‘quis*’ (quisyere,
quise), which are all Old Spanish forms of querer “to want”:

select top 100 x12,w1 from x1
where w1 like 'quer%' or w1 like 'qu_er%' or w1 like 'quis%'
order by x12 desc

We may determine, however, that a number of the morphologically similar word forms
actually belong to another lemma. In the example above, for example, a number of the matching forms
belong to the Old Spanish verb querellar “to quarrel”. To further limit the forms, we may wish to
provide a syntactic context in which only the forms of querer “to want” will be found, such as those
forms that precede an infinitive. The following query does this by using a sub-query to limit the [que-]
forms to just those that occur immediately before an infinitive (w2; [-AR/-ER/-IR/-YR] for Old
Spanish) in the table of 2-grams (x2), which is a syntactic environment in which querellar “to fight”
would likely not occur:

select top 100 x12,w1
from x1
where (w1 like 'quer%' or w1 like 'qu_er%' or w1 like 'quis%')
and w1 in
(
select w1 from x2
where (w1 like 'quer%' or w1 like 'qu_er%' or w1 like 'quis%') and
(w2 like '%ar' or w2 like '%er' or w2 like '%ir' or w2 like '%yr')
)
order by x12 desc

By combining pattern matching (e.g. ‘qu_er*’), collocational information for multi-word n-grams
tables, and frequency information for each of these n-grams, it is possible to lemmatize hundreds or
thousands of words in just a few hours, even when there is no lexicon available.

Finally, we should once again keep in mind the progressive and cumulative nature of the
annotation process. The more we have defined a particular grammatical category or a particular
lemma, the easier it will be to find members of additional categories or lemma. For example, in
attempting to find the members of the lemma [querer] “to want”, we have looked at n-grams in which
the word in the following “slot” ends in [-AR / -ER / -IR / -YR] (in Old Spanish). Yet at certain point
we will have refined the [V_INF] category to the point that we can use it directly in the queries.
Likewise, once we have identified the forms of a particular lemma, we can then use that lemma directly
in subsequent queries. For example, rather than using ‘quer*’ and ‘qu_er*’ to define [querer], at a
certain point we can refer to the lemma [querer] directly as we search for other lemma and grammatical
categories. This is of course similar to more traditional methods of bootstrapping, which perform
progressively more refined annotation on the textual corpus itself.

 179

8. The advantage of n-grams databases vs. traditional approaches

In the preceding sections, we have shown how forms can be annotated, based on information from n-
grams and frequency in relational databases. This is a much less orthodox approach than the standard
approach, which is to use regular expressions (or other pattern matching schemes) to search for strings
and patterns in the textual corpus itself, and then insert the annotation into the textual corpus.
However, there are certain clear advantages to the relational database / n-gram approach, as we discuss
in this section.
 First, our approach is probably much more economical and efficient than the standard
approach. As has been mentioned several times, even the most complex queries on tens of millions of
records in the n-grams tables take only one or two seconds to run. In the standard approach, each query
may involve a new traversal of the entire textual corpus. This is much less of a problem for small
corpora (one million words or less), but may quickly become prohibitive for corpora containing tens of
hundreds of millions of word of text.
 Second, the relational database approach is able to take advantage of sub-queries, which
allows it to perform complex multi-stage tests on the data. For example, in order to search for a 1SG
form of the present tense (fablo “I speak”), the query could have a number of sub-queries: check to see
if the form ends in [-O], check whether the verbal root is also the root for a relatively high frequency
infinitival-like form (i.e. with the [-AR/-ER/-IR/-YR detached), and check whether the form occurs in a
multi-word sequence (e.g. a 2- or 3-grams table) where (1SG) present tense verbs would likely occur.
Although the database actually performs these searches in sequence, the intermediate result of each
sub-query is stored in a temporary table and is automatically processed by the database program.
 In the standard approach, it would likely be much more complicated. After each traversal of
the entire corpus (to look for high frequency, morphologically-related forms, or word sequences), the
program would have to store the temporary results and then re-use these as part of subsequent
traversals of the corpus. Depending on the efficiency of the script used to process the data, this could
quickly become too complicated or prohibitive, in terms of speed and performance.
 Third, the n-grams approach naturally lends itself to advanced collocational analysis of the
data. For example, in examining the top one hundred forms of suspected adjectives, it might be useful
to see the fifteen or twenty most frequent 3-grams for each word form, in which the word form
occupies the middle slot. With the relational database approach, the sorted results could be produced
(using sub-queries) in two or three seconds. While it would certainly be possible to produce the same
listing using the standard approach, it is likely that it would be somewhat more complicated than the
five or six lines of code in the relational database SQL command.
 Fourth, the relational database approach allows one to easily select and deselect word forms
that are potential members of a syntactic category or particular lemma. For example, the SQL
command can INSERT 100 or 1000 probable forms into a “temporary” table, along with the highest
frequency preceding and following words, if so desired. These forms can then be quickly reviewed and
the value for an “action” column can be quickly set to a particular value for those word forms that
belong to the grammatical category or lemma. Another UPDATE command can then go back and
assign the particular POS or lemma to all of the matching forms in the actual n-grams databases, for
those items whose “action column” has been set to a certain value. In the standard approach, it would
likely not be as intuitive or natural to review a list of suspected forms, select a subset of these, and then
annotate the corpus itself based on which items have been selected.
 The fifth and final advantage of the relational database / n-grams approach is also perhaps the
most important one. In this approach, the n-grams/frequency tables are simply one part of the overall
database, albeit the most important part. But because they are in a relational database, they can very
easily be joined to other tables within the same database, and there is no limit to the amount of
annotation that can be applied to the corpus. For example, in the Corpus del Español, there is a table
containing the synonyms for 30,000 words, and users can access this information as part of their
search. An example of this is the following query, which searches for all forms of all lemma that are
synonyms of mandar “to order, command”, followed by the subjunctive marker que “that”, followed
by a past subjunctive (mandé que fueran “I made them leave”; hicieron que dijera “they made her
say”):

 !mandar.* que *.v_subj_ra

Likewise, users of the Corpus del Español can create customized lists of words that are
morphologically, syntactically, or semantically related, such as adjectives describing emotions, words
ending in [-azo] that denote a blow or strike, or a list of temporal adverbs. These are stored in tables,
where they can later be used as part of the query syntax. For example, suppose that a user [Jones]
creates a list called [emotions], which contains a list of verbs of emotion (e.g. gustar, alegrar,

 180

sorprender “to please, make happy, surprise”). The user can then use this list as part of the following
syntactic construction to return phrases like me gusta que haya “it please me that there is”, le sorprende
que tengan “it depresses him/her that they have”. The following is the query as it is entered into the
search form, along with a description of the queryL

me/nos/te/os/le/les [Jones:emotions].* que *.v_subj_pres

[one of the indirect object pronouns me, nos, te, os, le, les + any form of any of the
words in the [emotions] list created by Jones + que + present subjunctive]

The web script then translates this into the following SQL command, which is passed to the database:

select top 300 * from x4 where
w1 in ('me', 'nos', 'te', 'os', 'le', 'les') and
w2 in (select w1 from x_l where x1 in ('gustar', 'sorprender', 'agradar', 'alegrar')) and
w3 in ('que') and
w4 in (select w1 from x_c where x1 in ('v_subj_pres'))

The important point is that there can be an unlimited number of levels of annotation on the
corpus – whether parts of speech, or lemma, or synonyms, or translations between languages, or
etymologies, or customized lists, and these can all be linked together with simple SQL JOIN
commands. It is not apparent how this degree of flexibility or power would be an inherent property of
the standard scheme, in which the annotation is based within the textual corpus itself.

9. The design and architecture of annotation in the relational database

As explained previously, there are two approaches to the placement of annotation in the relational
databases. One approach would be to include it as additional columns in the n-grams/frequency
databases themselves. For example, in the following case there is annotation (POS and lemma) within
the table for each of the three words in the 3-gram son las cosas “are the things”

Table 3: N-grams/frequency table with integrated POS and lemma annotation
W1 L1 C1 W2 L2 C2 W3 L3 C3 x12 x13 x14 x15 x16 x17 x18 x19 19-Lit 19-Oral 19-Misc
son ser vp las lo adef cosas cosa N 38 16 77 67 16 19 33 68 24 40 14

In this scenario, for example, a user who is searching for cases of a form of poder + estar + a present
participle (e.g. puede estar pensando “3SG-can be thinking”) would enter the following in the web-
based form:

 poder.* estar *.v_ndo

This is then translated into the following SQL command, which queries only the 3-grams table (x3),
since it has all of the POS and lemma information included within that one table:

select top 300 * from x3 where
L1 = ‘querer’ and
W2 = ‘estar’ and
C3 = ‘v_ndo’

 The alternative is to have the n-grams/frequency information in one table (x3), and the POS
and lemma information in two additional tables (x_c and x_L, respectively):

Table 4: Separate n-grams/frequency, POS, and lemma tables
w1 w2 w3 x12 x13 x14 x15 x16 x17 x18 x19 19-Lit 19-Oral 19-Misc x3
son las cosas 38 16 77 67 16 19 33 68 24 40 14

w1 x1 pos w1 x1 lemma
es v_pres (x_c) es ser (x_L)
será v_fut cosa cosa
sido v_pp cosas cosa

In this scenario, there would be simple SQL JOIN queries to link the two databases. The same query
shown above would be translated into the following SQL command. In this case, the database first
sub-queries the POS (x_c) and lemma (x_L) tables, and then feeds the output from these tables into a
query of the main n-gram/frequency table (x3):

 181

select top 300 * from x3 where
w1 in (select w1 from x_L where x1 in ('poder')) and
w2 in ('estar') and
w3 in (select w1 from x_c where x1 in ('v_ndo'))

So which of the two approaches produces the best results? The advantage of having the
annotation within the n-grams / frequency table itself is that the database creator can use contextual
information to resolve ambiguity. For example, in the 3-grams table two of the 40+ million records are
for the strings el poder de “the power of” and para poder “in order to be able”:

Table 5. Contextual disambiguation, based on n-grams
W1 L1 C1 W2 L2 C2 W3 L3 C3 x12 x13 x14 x15 x16 x17 x18 x19 19-Lit 19-Oral 19-Misc
el el a_d poder de de prep 192 57 54 200 135 93 360 255 67 36 152

para para prep poder ser ser v_inf 0 0 2 11 5 3 13 37 6 17 14

In Spanish, poder can either be a noun (el poder “the power”) or an infinitive (poder saber “to be able
to know”). Therefore, it is not immediately clear what the POS or the lemma should be for the [poder]
in [w2] slots.
 Using simple SQL updates, however, we can look at the contextual information to fill in or
alter the POS and lemma values, based on the values in the other word slots. For example, the
following UPDATE query will assign the value of [noun] to [poder] when it occurs before a
preposition (as in the first row) and it will assign a value of [v_inf] when it is followed by another
infinitive (the second row). The second case is shown in the following example:

 update x3
 set c2 = ‘v_inf’
 where w2 = ‘poder’ and c3 = ‘v_inf’

Judging from languages like English – which have such a high degree of polysemy – it may
seem unwise to have to run a large amount of SQL updates – such as the one just shown – to improve
the annotation. Yet it turns out that because Spanish is such a morphologically strong language, there
are relatively few forms (as with poder) that have a high frequency as two different parts of speech or
two different lemma.
 Because of this very low level of polysemy, we might take a more radical step and completely
remove the annotation from the n-grams/frequency tables, as shown in Table 4 above. In this case
there would be two entries for poder in both the POS and lemma tables, and in most cases, the queried
phrase will naturally disambiguate itself. For example, if a user searches for [de *.v_inf *.v_inf], then
[de poder saber], [de poder estar] and others will be retrieved, because poder is listed as a [v_inf] in
the POS table. And it turns out that all of these examples of the potentially polysemous poder really
are in its use as an infinitive. Likewise, if a user searches for [el *.n de], then [el poder de] “the power
of” will be retrieved, and again virtually all of these cases will be with poder as a noun (because of the
following preposition). There will be problems only in those relatively few cases in which 1) a word is
polysemous and 2) both meanings are highly frequent and 3) the context is not sufficiently rich to
disambiguate the multiple meanings.

Assuming that it is the case that ambiguity in POS and lemma assignment is much less of a
problem in a morphologically complex language like Spanish (as opposed to a morphologically weak
language like English), then we can take the further step of simply removing the annotation from the n-
grams/frequency tables altogether (where they might be useful for contextual disambiguation) and
place them in separate POS and lemma tables. In fact this is precisely what we have done in the Corpus
del Espanol, and more than a year’s worth of complex searching on the corpus suggests that it very
rarely leads to any problems.

One of the major advantages of placing the annotation in tables that are separate from their
context deals with redundancy. In the database architecture in which the POS and lemma information
is part of the n-grams tables, then redundant annotation occurs every time a word occurs in any slot of
any n-gram table. Thus a word like es “is” would be annotated as [POS=v_pres; lemma = ser] in each
of the 209,160 rows of the 3-grams table where it appears in the [w2] slot – as well as hundreds of
thousands of other rows for the other slots of the 3-grams table and the other n-grams tables. By
placing the annotation in a separate table, there is exactly one entry for [es].

There are also secondary benefits from placing the annotation in separate tables, both of which
are related to the issue of redundancy. First, because the annotation only occurs in one or two rows of
the POS or lemma tables, hundreds or thousands can be updated in a matter of one or two seconds. If a

 182

form can occur in hundreds of thousands of rows, on the other hand, then updating the annotation for
the large amount of forms becomes more difficult.

A second issue is somewhat more technical in nature, and deals with the physical architecture
of database tables. In most databases, only one column in each table can have a “clustered” index,
which means that the rows in the table are physically arranged on the hard drive according the contents
of that column. (In a non-clustered index, on the other hand, there are pointers to the data, but the data
itself may be spread over the entire hard drive.) For our case, the important point is that if the clustered
index is placed on the [w1] column (the first word in the n-gram), then any indices on the annotation
columns in the n-grams table cannot be clustered, and queries dealing with POS or lemma will be
relatively slow. By placing POS and lemma annotation in their own tables, each of these tables can
contain a clustered index, and text retrieval will be much faster. This is why queries of the 100 million
word Corpus del Español typically take just one or two seconds – for even more the most complex
queries, involving POS, lemma, word patterns, synonyms, and user-defined lists of words.

References

Cucerzan S, Yarowsky D 2002 Bootstrapping a multilingual part-of-speech tagger in one person-day.
CoNLL-2002 Sixth Conference on Natural Language Learning. Taipei, Taiwan, pp. 132-38.

Ghani R, Jones R 2002 A comparison of efficacy and assumptions of bootstrapping algorithms for
training information extraction systems. In Proceedings of LREC 2002 Workshop on "Linguistic
Knowledge Acquisition and Representation: Bootstrapping Annotated Language Data". Spain: Las
Palmas, pp. 61-72.

Moreno, A., López S, Sánchez F 2003 Developing a syntactic annotation scheme and tools for a
Spanish treebank. In Abeillé A (ed), Building and using syntactically annotated corpora. Dordrecht:
Kluwer, pp. 149-65.

Rocio V, Pereira G 1999 Análise sintáctica parcial em cascata". In: Marrafa P, Mota M (eds),
Linguística Computacional: Investigação Fundamental e Aplicações. Lisboa: Edições Colibrí, pp. 235-
251.

Simov K, Kouylekov M, Simov A 2002 Incremental specialization of an HPSG-based annotation
scheme. In Proceedings of LREC 2002 Workshop on "Linguistic Knowledge Acquisition and
Representation: Bootstrapping Annotated Language Data". Spain: Las Palmas, pp. 16-23.

van Eynde F, Zavrel J, Daelemans W 2000 Lemmatisation and morphosyntactic annotation for the
spoken Dutch corpus. In M. Gavrilidou et al. (eds), Proceedings of the Second International
Conference on Language Resources and Evaluation. Paris: ELRA, pp. 1427-1433.

 183

	Annotation without lexicons:�an alternative to the standard bootstrapping approach
	
	Mark Davies

	3. Queries without annotation
	4. Annotating the corpus: inheriting information from related lexicons
	5. POS annotation with n-grams/frequency information and pattern matching
	6. POS annotation with n-grams and collocation information
	7. Lemmatization with n-grams, frequency, collocates, and pattern matching

